Object Categorization in the Sink:
Learning Behavior—-Grounded Object Categories with Water
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Abstract— This paper explores whether auditory and propri- Recent research in robotics that focuses on interactively
oceptive information can be used to bootstrap learning abou  |earning about objects indicates that, in addition to video
how objects interact with water. Our results demonstrate tat g5 anq proprioception are major sources of information [1]
a robot can categorize objects into “containers” and “non- . . . -
containers” based on how the objects sound like and feel like The d'ﬁerem shapes, sizes, and materials of Obje(?tSfeH:'af
when water is flowing onto them. Using a behavior—grounded how an object sounds and feels to a robot, which can be
approach, the robot performed five different exploratory behav-  used for recognition [1] and categorization tasks [2]. It is

iors on the objects and captured auditory and proprioceptie  unclear, however, whether these modalities would also be
data as the behaviors changed the spatial configuration be®en useful during tasks that involve water

the objects and the water stream. Using this data, the robot fst . . .
learned perceptual outcome classes for each behavior—-mditg This is one of the first papers that tests the hypothesis

combination. Functionally meaningful object categories wre that a robot can learn meaningful object categories using
then formed based on the frequency with which different audio and proprioception when the interaction tasks irerolv
outcome classes occurred with each object. water. A humanoid robot performed five different explorgtor
| INTRODUCTION behaviors on ’15 dn‘ferent_ objects in a sink with running wa-
) , ter. The robot's observations for a given behavior—mogalit
Humanoid robots and water don't play well togethercompination were first clustered to form outcome classes.
The last place researchers in this field expect to see theife frequency with which each outcome class occurred with
expensive equipment s in the sink when the water is runninga ey opject was used to form object categories. Because
Yet, water manipulation is an important domain for robotg, opject category was learned for each behavior-modality
operating in human environments. Water is used for many,mpination, the resulting categories were unified to form
universal activities, including cooking, cleaning, anddgm- 5 single one. The results showed that sound captured size
ing. Therefore, serious consideration is needed to adtiiess ifrerences proprioception captured weight differencesl
fundamental questions associated with water manipulationyhen combined the unified categorization captured func-

Water manipulation tasks almost always involve the Usgonal differences (e.g., container or non-container).
of a container. It is not easy, however, to determine what
properties of an object make it a container. Part of the Il. RELATED WORK
difficulty stems from the fact that there are literally thands Recent research has addressed interactive object catego-
of objects that can act as cups under the right circumstancegation, but few studies have tried to categorize objects
Another difficulty is the fact that visual information aloi® during interactions with water. Aksogt al. [3] presented
not sufficient to identify all cups. For some objects, e.g., an activity recognition framework that could also be used
colander, one has to pour water into them to find out. for object categorization. Activities were representeidgis

In the context of robotics, this paper addresses this quesequence of spatial-temporal features extracted frormoside
tion in terms of the multimodal sensorimotor propertie©bjects were categorized by the type of activities a human
of the objects as the robot actively changes their spatigerformed with them. During one of the activities a human
configuration relative to a stream of running water. Thigpoured dark—colored tea from one cup into another one. Cups
allows the robot to learn embodied representations that anere distinguished from other objects because they were the
extracted from the robot's own experience with water. Foonly objects used during pouring behaviors.
example, pouring water changes the weight of the object, Several studies have addressed interactive object catego-
which the robot can sense through proprioception. The robgation using sensory modalities other than vision. Savap
can also detect how the pitch of the sound changes as tieal. [4] showed that a robot could identify the different
cup is filled up with water or as the water begins to overflovghape, size, and material categories of objects using icous
and hit the sink basin. object recognition models. In the work of Nakamuea

al. [5], a robot learned a multi-modal object categoriza-
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Object manipulation is an important area of research i \
the area of underwater robotics [6][7]. Many aspects of of (
erating a robotic manipulator change when it is under wate <
including control algorithms and communication problems i
Applying the correct amount of force to an object during
underwater manipulation tasks is also challenging. Liahg
al. [8] built a fingertip force sensor to address this problem
A manipulator using their sensor can receive feedback abg
the amount of force it applies to an object during underwatse
manipulation tasks.

Transporting an open container without sloshing the liqui
inside it is a particularly hard control problem that rensain
an active area of research. This problem is usually solved
formulating complex control algorithms [9][10][11]. Many
of these algorithms, however, are designed using the grec
size and shape of the container that is being controlled. 4
a result, they have to be redesigned when the setup chang

As far as we know, computational modeling of wate
is not easy. It is difficult to avoid ad hoc methods for
water detection when only vision is used (see, for exampl
[12][13][14][15]). Furthermore, it is hard to identify new Fig. 1. The self—contained sink that was used in the robogieements.
ways to perceive water when plumbing for water is notLeft) A five-gallon bucket held a reservoir of water that was pumped

installed in most research labs. Thus. most interactiokstaste the faucet. The water was collected back into the buckewibflowed
ith ter h b limited t - ter f down the drain. A plastic drip pan underneath the buckeectt excess
with water have been limited 1o pouring water irom Or“?ﬂops of water(Top Right) View of the 13-inch-deep sink from the top.

container into another container or otherwise are imitegio (Bottom Right) Close—up of the water pump and the plumbing inside the
of that activity (see, for example, [16][17][18][19][20}yvith  bucket. Blue arrows indicate the direction of the water fldhe light was

: ' . : t , but it could not be detached from th .

little regard for the perception of water. Research hasget 1ot necessary, but It could not be detached from fhe pump

identify a QOOd source Of. mformatlon that can be used fo\yvas directed through half-inch inner diameter vinyl tubing
tasks that involve interacting with water.

This paper shows that audio and proprioception can t}o both inputs simultaneously by splitting the water ling¢hwi

. _ ) ) . plastic T-junction. The diverter valve for the sprayeides
used for learning object categories while a robot mteracme base of the faucet was removed in order to achieve the
with objects in a sink.

maximum amount of flow from the pump, which can move
A Robot [Il. EXPERIMENTAL SETUP up to 300 gallons of water per hour and has a maximum
The experiments described in this paper were performe\/&rt'caI lift Of. 6.6 ft. In othe_r words, the plumbing for the
: . , Sink was entirely self-contained.
using an upper-torso humanoid robot. The robot's arms
are two Whole Arm Manipulators (WAMs) from Barrett C. Objects
Technology. Each arm is equipped with a Barrett Hand as The robot interacted with the 15 objects shown in Fig. 2.
its end effector. A microphone in the robot’s head was usetihe objects could hold water in one orientation, but became
to capture sound at 44.1 KHz over a 16-bit mono channelnon-containers when flipped over. The objects (cups and
The body of the robot was covered to protect it frommugs) varied by their size (small, medium, and large) and
water. The left hand and forearm were protected with a cle#ieir material type (plastic, metal, paper, ceramic, arggl
Waterguard Cast and Skin Protectf1], which is typically Because the plastic glove that covered the robot’s hand
used by people with broken arms to protect their cast whegduced the grasp friction, objects were chosen only after
they take a shower. The rest of the body, except the heatle determined that the robot could securely grasp them.
was protected with transparent rain ponchos that were heffl Exploratory Behaviors
in place with clear tape. The experiments were divided into trials. Before the start
B. Sink of a trial, the robot moved its left hand to a location near the
Figure 1 shows the standard utility sink that was used iadge of the sink, where an experimenter placed one of the
the experiments. The sink was assembled fromRtfremost 15 objects in its hand. During each trial, the robot perfame
“All'in One Box Laundry Tubsink kit, which was purchased a sequence of behavioral interactions with each objectan th
from Lowe’s (a home improvement store). The sink fixturesink while the water was flowing. The five behaviors were:
contains a combination faucet. hold, flip, up and downshake andin and out(see Fig. 3).
Because there were no water lines in the laboratory th&tach behavior was performed twice, withflgpp between
hosts the robot, a five—gallon bucket was used as a watesich execution, before moving on to the next behavior in
supply. ASmartPondvater pump was used to recirculate thethe sequence. In other words, the object was in the container
water between the bucket and the faucet. The pump’s floarientation during the first execution of the behavior and in
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Fig. 2. The objects used in the experiments. The set incluagdcts
from five different material types, three different sizesd ¥arious weights.
The objects could hold water in one orientation, but becaoreaontainers
when flipped over.
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the non-container orientation during the second executfon
the behavior. Altering the object pose from container to-norg ‘
container and back ensured that the outcomes that occurted
during one behavior were independent from the outcomgs
that occurred during previous behaviors, because the water
was poured out between behaviors. The individual behavioFsy. 3. The five behaviors performed by the robot with thesuitng
are described in detail below. audio spectrograms and sequences of joint torque readings.

Hold: At the start of this behavior the robot moved its hand ] ) ]
directly under the water stream while holding the object. I£5 Objects when they were in each of the 2 object poses. In

remained in that configuration for approximately 10 second§ther words, a total 06 x 10 x 15 x 2 = 1500 behavioral
This duration was sufficient to fill up halfway the |argest|nteract|ons were performed. The outcome sequences varied
plastic cup (i.e., the large blue cup in Fig. 2). in length according to the duration of each behavior as

Flip: The robot rotated its wrist by 180 degrees, flippinidhe.scé'bted _:_r:] thel prte_wo:Js sectu:n.tl_t to:)hk 6 hk:)ut,rs :]0 c(;)llect
the orientation of the object. Although this behavior wa IS data. The piastic glove protecting the robots hand was

performed several times during the interaction sequemtg, o replaced halfway through the data collection process kscau

the flip following the hold behavior was used for learning. a few mlc”ro-holestdefvelotpeti n thtetrr]JIastlﬁ, which allowed a
During this execution of thedlip behavior, many of the very sma arﬂfj“” ot water o get through. .
containers were full with water due to the duration and Durlng the;™ behavioral interaction, the robot acquired a
the nature of thehold behavior. Theflip behavior lasted data point C,)f the forrr(Bi7Oi7Wiv_Ti)l where B; € B was
approximately 2 seconds one of the five exploratory behavioig; € O was one of the

Up and Down The robot moved the object up and down30 objects (15 objects 2 orientations)W; was the audio

under the water stream during this behavior. The objeﬁ!ﬁvef"”_“- andl; was the sequence of joint to_rque readin_gs.
started near the bottom of the sink and ended just below t e audio sequencé””, was sampled at 16-bit/44.1 KHz in

tip of the faucet. This movement was repeated four timefnoNO and stored as a wave file. The sequence of joint torque

ending at the starting position. The entire behavior Iasterﬁadmgs'Tl’ consisted of joint torque readings for each of

roughly 8 seconds. the seven joints of the robot’s left arm, recorded at 500 Hz

ShakeThis behavior was performed by shaking the objec?nd. stored as a t_ext file. Another way to look gt_th|s data
back and forth under the water. The back and forth motio?\et is as a collection of 300 wave files and 300 joint torque

was repeated three times during this behavior. The whotg duences for each behavior.
behavior took about 10 seconds to perform. B. Auditory Feature Extraction

In and Out This behavior consisted of moving the object We used the auditory feature extraction pipeline and the

in and out of the water flow four times. It lasted 10 second%ublicly available source code that are described in [1].
IV. METHODOLOGY They are briefly summarized below. The three stage process
A. Data Collection includes: 1) Transforming each 44.1 KHz, 16-bit single
Multiple sequences of audio and proprioception data werhannel wave file into a spectrografy = sis},...s},
collected during each trial. The robot collected one datwheres§ € R33, using the Discrete Fourier Transform (with
sequence per modality for each of the five exploratorg window length of 25.625 ms and an overlap of 10 ms);
behaviors Kold, Flip, Up and Down Shake In and Ou). 2) Training a6 x 6 SOM using a subset of the column
The robot performed the 5 behaviors 10 times on each of ttwectors,s;'-, from all of the spectrograms for the behavior.

Frequency Bins
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In this case, 5% of the total number of column vector&. Object Categorization
were used during the training procedure; 3) Converting each Some outcome classes occur more often with certain
spectrograms; = sish,..., s}, into a state sequencé; = object categories compared to others, and this differesice i
ajay, .. .a; by mapping the column vectos;, to the most used to form object categories. For example, the sound of
highly activated nodey;, in the SOM. Audio was converted pouring can be heard more often during thie behavior
into state sequences using a separate SOM for each behawdien holding a cup than when holding a non-container.
C. Extracting Proprioceptive Features ~_ Similarly, the change in weight can be detected more often
The proprioception feature extraction process is similagyring this behavior with a cup compared to a non-container.
to the one used for audio. A sequence of joint torques i other words, the distribution of outcome classes thatiocc
represented as a state sequence of the most highly agfith a cup is probably different from those that occur with
vated nodes in a Self-Organizing Map (SOM). During thig, non-container. The robot uses these differences in the
conversion, the proprioception data is reduced from sevegmtcome class distribution of objects in order to cluster th
dimensional numeric column vectors to two—dimensionaﬂbjectS into object categories.
nominal states. Because the proprioception values ar@ire  Given a set of outcome classesy, . . ., Cy, the robot
in a column vector format, the feature extraction procesgcquired feature vector&s,...,Zs,, Where eachZ; =
has only two stages in this case: 1) Training & 6 SOM i i and:! is the frequency with which outcome class
using 5% of the collected column vectors that have th@j occurred with objecO;. Thus, the feature vectdf; esti-
form ¢ € R"; 2) Mapping column vectors to the MoStmates a probability distribution of how likely each outcome
highly activated node of the trained SOM to extract a statgiass is to occur with objead;. A negligible amount of

sequencep; = pipj, ..., p,,, fromthe joint torque sequence nojse ¢ was added toz! in cases when it was polarized
T; = tits, ..., t,,. One SOM was trained per behavior. o 0 or 1. The feature vector&,, . .., Z3, were passed to
D. Outcome Class Learning the X-means [25] unsupervised clustering algorithm (with

Obiject properties are indirectly captured in the outcom#he desired number of clusters, varying from 2 to 10)
state sequences, which can be clustered to form meaningiinlorder to form object categories. X-means extends the K-
outcome classes. For example, information about the shapeeans clustering algorithm by automatically estimating th
the height, and the material of the small metal containerorrect number of clusters. The result of this process is an
is detectable in the audio recording of the robot holdingbject category labeling(®) =1;,..., 13, of the objects for
the object under the faucet. Water falling on metal makethe u*"* behavior-modality combination.

a unique sound. The sound of water filling up a containgt |jnified Categorization

and then spilling over the top can also be heard. Similarly, Because different behaviors and sensory modalities cap-

@nformation _about_ the weight of Fhe same object is _prese%re very different information about the objects, the gate

in the propr!ocepnon Sequences in Wh'c_h the robot flipped Bzations formed using them can be very different as well.
over. The joint torql_Jes (.:han.ge as water Is pourgd out becau§8me of the resulting categorizations are more meaningful
the small metal object is fairly light to begin with. an others. Presumably, however, there is a consensus

Clearly, a robot may observe many different types o mong the individual categorizations about a good way

outcomes as I |_nteracts_W|th the objects. Presumably,% categorize the objects. The unified categorization step
can directly identify the different types of outcomes that lidentifies this consensus clustering

observes by clustering them into outcome classes. In other.l.he overall goal is to identify a unified categorizatién,

i i 300 i - . . . . . .
word_s, given acoustic stategoiequen({e_s}i:l OF proprio-  ynat s representative of the multiple input categorizatio
ception state sequenc¢d’};_; for a given behavior, the \x) ' '\(m) The best unified clustering of the input clus-

?Sk ?\f the rEbOt s 10 idﬁntifsy outcolmc(:el class.{ég h ’ Ck‘h. t?rings maximizes the Normalized Mutual Information,,i.e.
or this task we use the Spectral Clustering hierarc 'C%rgmax;\ S gNMI(}, A™) [26]. Solving this system for

clustering algorithmm [22]. The algorithm takes as input e best unified clustering is NP-Hard. It is possible, hasvev

similarity matrix, determines the correct number of cluste to search for a good approximation of the best clustering.

k, ano_l o_utp_uts the_oqtcome classes ..., C’? that it fi_nd_s. .. The Strehl and Ghosh Ensemble Clustering Algorithm [26]
The similarity matrix is created by measuring the similarit was used for this task. The algorithm takes as input the

between all pairs of state sequences using the Needlemad'mect categorizationa(), ... \(™) and a desired number

Wunsch Global String Allgnmfanf[ A.Igorlthm [23], one_of of clustersk (which was varied between 2 and 10), and then
several ways to compute the similarity between two striNgSaturns the best found ensemble clusterihg

In this case, the penalty for mismatched tokens during

the string alignment process is specified by the Euclidean V. RESULTS

distance between their corresponding nodes in the SOM. The individual categorizations formed by the robot varied
The spectral clustering algorithm recursively bi-paotis  in quality based on the behavior and the sensory modality

the similarity matrix using the Shi—-Malik Normalized Cutused to produce them. Overall, sound captured differences

objective function [24]. The recursion stops when a termingrimarily in size and then function. An example of the

tion criterion is reached. The leaf nodes of the tree formechtegorization formed for thim and Outbehavior for audio

by the algorithm are the outcome clas€gs. .., Cy. is shown in Fig. 4. In this specific case, most of the small



Audio/In and Out Unified Categorization

Cluster 1 Cluster 2

Cluster 1 Cluster 2
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Fig. 4. The object categorization produced using the soaptliced during Fig. 5.  The unified categorization produced using the tervitaal
the In and Outbehavior. The categorization captured differences in the&ategorizations formed by the robot. Clusters 1 and 2 reptesontainers.
size (i.e., cluster 1 has mostly small objects) and the fondfi.e., cluster Clusters 3 and 4 represent non-containers. The catedorizaiso captured
2 consists of the remaining containers while clusters 3¥etanly non- differences in the function (all four clusters), the sizéugters 1 and 2),
containers) of the objects. and the weight (clusters 3 and 4) of the objects.

objects belong to the same category. The other categori¢gs performed 100 times for each of the four dimensions.
merged the medium and the large—sized objects, but captured-igure 6 shows the results of the procedure. The learning
the secondary differences in the function of the objectsisTh framework captured a significant amount of information
sound was most suitable for discriminating between objecg&bout the objects in terms of their function, size, and
with different sizes. weight. The unified object categorization was most affected
Similarly, proprioception captured differences primgiil by differences in the container property, followed by dif-
weight and then function. For example, the categorizatiof¢rences in weight and then size. The size dimension had
formed for theln and Outbehavior placed the heavy objects!€SS information gain because the medium and the large—
(ceramic mugs and glass cups) in their own category. TH#Zed objects were usually categorized together. They did
secondary differences in the functions of the objects wef@dt overflow with water, but the small objects did. The
only captured in two other object categories. framewprk captured _I|ttIe mformat.lon about the mater|al
The fact that sound captured differences in size and thRfOPerties of the objects, which is why the information
proprioception captured differences in weight is obsdevab92in for that dimension is similar to the average random

in most of the individual categorizations that were used t§iformation gain. o o
form the unified clustering. Fig. 5 shows that the unified The non-zero error bars in Fig. 6 indicate that the unified

clustering also distinguished between objects of diﬁmeﬁ:lusterings changed when the date} was sh.uffled. In other
sizes and weights. However, the functional difference bé/yords, the order—dependent clustering algorithms prodluce

tween containers and non-containers is observed just gsdlstrlbutlon of different categorizations. The ten diffiet

strongly. In fact, when the number of clusters was forceHr"f'.ed categqnzahons ranged from having three categorie
to six categories. However, the graph clearly shows that the

to two, the unified categorization perfectly separated the > . S . ;
containers from the non-containers (i.e., the first twoteltss unified cIus'Ferlngs still p!ck up meamlngful resulf[s n tesrm
in Fig. 5 were merged into the “cups” cluster and clustergf the functional properties of the objects. The informatio
3 and 4 were merged into the “non cups’ cluster) Thusgained with respect to the functional properties of the ciisje
the unified clustering was most suitable for discriminatin resilient to fluctuations in the ordering of thg_data. Iot;‘a_
hen forced to output only two clusters the unified clusigrin

between objects with different functions. ) .
. . ... perfectly separates the containers from the non-continer
To test the robustness of the unified object categorizatio}, . ) e
out of 10 cases (an object was misclassified as a non-

the framework described above was also evaluated using t(%]ntainer in 1 case)
different permutations of the data collected by the robbtsT '

procedure produced ten different unified categorizations.  VI. CONCLUSION AND FUTURE WORK

The information gain of each unified categorization was This paper showed that sound and proprioception are
computed with respect to a human labeling of the objecimportant sources of information during water manipulatio
along four different dimensions (function, size, weighida tasks. Sound consistently captured information aboutittee s
material). For comparison with a baseline value, the averagnd the function of the objects. Proprioception consigtent
random information gain was also computed along thosmaptured information about the weight and the function of
dimensions. The category labels from the human labelinfpe objects. Furthermore, when the information from the two
were shuffled and then the information gain was computetdodalities was combined it was possible to form even more
with respect to the original human labeling. This proceduraccurate object categories. The unified object categ@izat
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categorizations with respect to four different object @migs (function,
size, weight, and material). The information gain valueseweomputed
using a human labeling for each of the four dimensions. Therame
and standard deviation of the information gains were coetguising the
unified object categorizations from 10 different execusiaf this learning
framework. The random category information gain is showrcémparison.
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was meaningful with respect to the function, the size, an[qo]
the weight of the objects.

The results begin to answer the question: “What is a cup?”
For our robot, and for the current experimental setup, a cdbll
is an object that sounds and feels in a specific way as thg;
water flows into it. Objects that are not cups sound and feel
differently. Thus, using this unsupervised approach, ttet 13]
has the ability to autonomously extract and attach symbol[c
labels to the clusters of objects that a human would call
‘containers’ or ‘non-containers’. [14]

Another key contribution of this paper is the idea thafs
learning about water can be bootstrapped using auditory
and proprioceptive data in the absence of visual and tactile
information. Obviously, our robot does not know that thg;g
water feels “wet,” as it does not have tactile or any sort
of skin sensors the way humans do. Nevertheless, the robbt
“knows” how the objects from the “cups” cluster sound
and feel when they are placed under the water stream in
the sink. The robot also “knows” how these auditory andtel
proprioceptive properties change as the robot activeliesar
the position of the object using its own behaviors. Thi$19]
embodied sensorimotor representation can be particularly
advantageous when addressing water manipulation problems

Future work should continue to explore interaction with
liquids. Learning how objects and water interact with oneyy;
another is essential for manipulating liquids more efiedii.  [22]
However, there are many more hurdles to overcome before
robots can fully take advantage of water during objer,{t2
manipulation tasks. The message of this paper is that sound
and proprioception might be able to bootstrap this researdg4l]
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