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Abstract— This paper describes an approach to interactive
object categorization that couples exploratory behaviors and
their resulting acoustic signatures to form object categories.
The framework was tested with an upper-torso humanoid robot
on a container/non-container categorization task. The robot
used six exploratory behaviors (drop block, grasp, move, shake,
�ip, and drop object) and applied them to twenty objects. The
results from this large-scale experimental study show that the
robot was able to learn meaningful object categories using only
acoustic information. The results also show that the quality of
the categorization depends on the exploratory behavior used
to derive it as some behaviors elicit more salient acoustic
signatures than others.

I. INTRODUCTION

The ability to form meaningful object categories is one of
the hallmarks of human infant development [1]. Infants as
young as 6-months-old can learn an abstract representation
of a simple object category [2]. Furthermore, theories in
psychology and cognitive science have proposed that active
interaction with objects is necessary to form categories that
capture the functional properties of an object [3]. Tradition-
ally, however, most methods for object recognition and object
categorization have been vision-based (see [4] for a literature
review). Because these methods rely on passive observation
(as opposed to active exploration) they often fail to capture
the functional properties of objects. For example, two objects
that look the same are indistinguishable with vision but they
may produce different sounds when shaken. Similarly, it is
very hard to specify what a container looks like, but it may
be very easy to detect a container by dropping an object over
it and listening for the speci�c sound pattern of the object
bouncing inside the container.

In contrast to disembodied vision-based systems, humans
and many animals use active behavioral exploration to learn
about and to classify novel objects [5]. Furthermore, humans
ground object knowledge using multiple modalities (e.g.,
touch and hearing) in addition to vision. Similar behavior-
grounded approaches have proven quite useful in robotics
as well [6] [7]. The advantage of using behaviors to ground
object information is that the robot can autonomously test,
verify, and correct its own knowledge representation without
human intervention [8] [9].

A growing body of empirical studies in embodied acoustic
object recognition supports this view [10] [11] [12] [13] [14].
These studies have shown that probing an object and other

Fig. 1. The upper-torso humanoid robot used in the experiments. The robot
is shaking one of the container objects used in the experiments.

forms of simple contact are suf�cient for a robot to identify
the material type from which the object is made of. A robot
can become better at object recognition as it performs more
exploratory behaviors on an object [13]. Further work is
necessary, however, to determine if a robot can use similar
acoustic models to form object categories.

This paper tests the assumption that a robot can form
meaningful categories of objects using only acoustic infor-
mation. The robot's task was to categorize 10 container
and 10 non-container objects using six different exploratory
behaviors (drop block, grasp, move, shake, �ip , and drop
object). The robot automatically formed acoustic outcome
classes by clustering the sounds it observed for a given
behavior. Object categories were determined using the fre-
quency with which different acoustic outcomes occurred with
different objects. The results show that the robot was indeed
able to form meaningful object categories. The results also
show that the number of interactions and the choice of
exploratory behavior affect the quality of the categorization
as some behaviors are better suited for this task than others.

II. RELATED WORK

Relatively few studies have investigated how a robot can
groundthe representation of object categories in its sensori-
motor experience. Perhaps the �rst work toward interactive
object categorization was done by Pfeifer and Scheier [15],in
which a mobile robot traversed its environment with the task
of cleaning it. The robot could lift small objects and push



medium-sized objects. The robot learned to collect small and
medium-sized objects and to ignore large objects.

Several studies have shown how a robot can learn sim-
ilarities among different types of objects. The robot in the
work described by Sinapov and Stoytchev [16] interacted
with 6 different stick-shaped tools and learned a hierarchi-
cal taxonomy of outcomes for each one. It computed the
functional similarity between two tools by comparing their
outcome taxonomies. In another study, Montesanoet al.
[17] created a framework with which a robot learned the
similarity between differently sized spheres and cubes by
learning relationships between the robot's interactions,the
object's features, and the observed effects. In the work of
Ugur et al. [18], a simulated robot traversed an environment
with random dispersions of spheres, cubes, and cylinders.
It learned which objects afforded traversability (spheresand
cylinders in lying orientations) from those that did not (cubes
and cylinders in upright orientations). None of the robots in
[16], [17], or [18] performed explicit object categorization.

Metta and Fitzpatrick [19] [6] showed that a robot could
simplify the task of object segmentation and recognition by
probing its environment. When the robot's arm made contact
with an object it detected a uni�ed area of movement that it
used to delineate the object from the background. This helped
the robot learn an object model for recognition. The robot
also observed the different movement outcomes for each
object (e.g.,rollable and non-rollable), which it associated
with the object model.

In the work of Nakamuraet al. [20] a robot captured
multimodal object data, which was used to infer the object
properties in one modality using data from another. The
robot squeezed objects to capture hardness, shook objects
to capture sound, and viewed objects from different angles
to capture visual features. They showed that the robot could
infer the hardness of an object from visual information much
better than it could infer whether the object would make
noise using visual information.

In the work of Sinapov and Stoytchev [13], a robot rec-
ognized objects using only acoustic data. The robot acquired
an interaction history of 1800 behaviors by performing 5
interactions (grasp, shake, drop, push, andtap) 10 times on
36 objects. The robot was able to recognize objects from
novel acoustic outcomes with 73% accuracy. The recognition
accuracy increased to 99% when the robot was allowed to
perform all 5 behaviors on the object before determining its
identity. In a follow-up study [14], the robot was also able
to classify objects based on their material type.

Sahaiet al. [21] used a robot to categorize 12 different
objects and 12 different surfaces. The categories captured
differences in the usefulness of objects and surfaces for robot
writing tasks. The robot detected marks as it performed 10
trace-making behaviors with each object-surface pair. The
robot categorized objects using the frequency with which
each object left a mark on each surface. It categorized sur-
faces using the frequency with which each surface captured
the traces left by each object.

In our previous work [22], a robot categorized 5 containers

and 5 non-containers using visual information. The robot
dropped a block over an object and observed co-movement
patterns between the block and the object as it pushed
the object. It formed outcome classes by clustering its
observations of co-movement. It formed object categories
by clustering the objects based on the frequency with which
different co-movement outcomes occurred with each object.
The separation of containers and non-containers allowed the
robot to learn a visual representation of each category from
3D depth images, which it used to quickly identify the
category of novel objects.

This paper builds on our previous work [22] by adding
more exploratory behaviors (now 6 instead of 1), increasing
the number of the behavioral interactions with the objects
(now 12000 instead of 1000), and capturing acoustic data
instead of visual movement data. In [22] the robot learned
the object categories using visual co-movement features
speci�ed by a human. In this paper the robot automatically
extracted acoustic features, after exploring 20 objects, and
learned from these features in an unsupervised way. It should
be noted that in this paper, the identity of each object is
assumed to be known. In other words, the acoustic data
corresponding to actions on a speci�c object is labeled with
the object ID. What is unlabeled is the category (container
versus non-container).

III. EXPERIMENTAL SETUP

A. Robot

All experiments were performed with the upper-torso
humanoid robot shown in Fig. 1. The robot was built with
two 7-DOF Whole Arm Manipulators (WAMs) by Barrett
Technology, each equipped with the Barrett Hand as its end
effector. The WAMs are mounted in a con�guration similar
to that of human arms. They are controlled in real time from
a Linux PC at 500 Hz over a CAN bus interface.

The audio data for the experiments was collected with
an Audio-Technica U853AW UniPoint Cardioid Condenser
Hanging Microphone mounted in the robot's head. The
microphone's output was routed through an ART Tube MP
Studio Microphone pre-ampli�er and a Lexicon Alpha bus-
powered interface, which transmits sound to the PC via USB.
Audio was recorded at 44.1 KHz over a 16-bit channel using
the Java Sound API.

B. Objects

The robot interacted with a small plastic block and 10
different objects (shown in Fig. 2). Each of the 10 objects
was a container in one orientation and a non-container when
�ipped over. Flipping the containers was an easy way for
the robot to learn about non-containers while preserving the
dimensions of the objects in the two categories.

The objects were selected to have a variety of shapes,
sizes, and materials. Objects were tall, short, rectangular
and round. They were made of plastic, metal, wicker, and
foam. A few objects that were initially selected could not be
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Fig. 2. The objects used in the experiments. (Containers) The �rst two
rows show the 10 container objects: wicker basket, metal trash can, potpourri
basket, �ower pot, bed riser, purple bucket, styrofoam bucket, car trash can,
green bucket, and red bucket. (Non-containers) The second two rows show
the same 10 objects as before but �ipped upside down, which makes them
non-containers for this particular robot with this particular set of behaviors.

used because they were too large to be grasped. Also, the
aluminum �ngers of the Barrett Hand did not create a �rm
grip with many objects, which was important for a large-
scale experimental study like this one. Therefore, rubber
�ngers were stretched over each of the robot's three �ngers
to achieve more reliable grasps.

C. Robot Behaviors

Six behaviors were performed during each trial: 1)drop
the block, 2)grasp the object, 3)movethe object, 4)shake
the object, 5)�ip the object, and 6)drop the object. A person
placed the block and the object at speci�c locations before
the start of each experiment. The robot grasped the block
and positioned its hand in the area above the object before
executing the six behaviors listed above. Figure 3 shows the
sequence of interactions for two separate trials.

The drop positions for thedrop block behavior were
randomly selected from a 2D Gaussian distribution centered
above the object. The standard deviation was empirically set
to be equal to the width (in pixels) of each object. Thus,
the small block fell inside a container during approximately
70% of all trials with containers. During the other 30% of the
trials with containers (and during trials with non-containers)
the block fell on the table. In some cases the block rolled
off the table (approximately 5% of all trials). In these cases,
the block was left off the table for the duration of the trial.

The other behaviors are self-explanatory (see Fig. 3).
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Fig. 3. Snapshots from two separate trials with a container and a non-
container object. Before each trial a human experimenter reset the setup by
placing the block and the object at marked locations. After grasping the
block and positioning its arm at a random location above the object the
robot performed the six exploratory behaviors one after another.
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Fig. 4. The feature extraction process: 1) The raw sound waveproduced by each behavior is transformed to a spectrogram. Each spectrogram has 33
bins (represented as column vectors), which capture the intensity of the audio signal for different frequencies at a given time slice. Red color indicates
high intensity while blue color indicates low intensity. 2)An SOM is trained using randomly selected column vectors from the spectrograms for a given
behavior. 3) The column vectors of each spectrogram are mappedto a discrete state sequence using the states of the SOM. Eachcolumn vector is mapped
to the most highly activated SOM node when the column vector is used as an input to the SOM. See the text for more details.

IV. METHODOLOGY

A. Data Collection

The robot collected multiple audio sequences while per-
forming each of the six exploratory behaviors,B = [drop
block, grasp, move, shake, �ip , drop object]. The six behav-
iors were organized into trials and always performed one
after another (see Fig. 3). For each of the 20 objects (10
containers and 10 non-containers) the robot performed 100
trials, for a total of20� 100 = 2000trials. With 6 behaviors
per trial, the robot performed6 � 2000 = 12000behavioral
interactions.

Another way to describe this dataset is to say that each
behavior (e.g.,shake) was performed 100 times on each of
the 20 objects. Thus, each of the six behaviors was performed
2000 times. During every interaction the tuple (B; O; A )
was recorded, whereB 2 B was one of the six behaviors
performed on objectO 2 O , andA was the recorded audio
sequence.

To minimize the effect of changing background noise
while collecting a dataset of this magnitude, the robot
performed one trial with each of the twenty objects shown
in Fig. 2 before moving on to the second trial with the
�rst object, and so on. This order was chosen to keep
slow changes in background noise (e.g., air-conditioning and
computer fans) decorrelated from other variables such as
object identity or test behavior.

B. Feature Extraction

Auditory features were extracted automatically by repre-
senting the sounds produced by each behavioral interaction
as a sequence of nodes in a Self-Organizing Map (SOM). The
feature extraction process is the same as in our previous work
[13]. The three stage process includes: 1) a Discrete Fourier
Transform which takes a 44.1 KHz audio sample,A i , and

converts it to a 33 bin spectrogram,Pi = [ pi
1; : : : ; pi

l ], where
pi

j 2 R33; 2) a 2D SOM that is trained with the spectrograms
corresponding to one of the robot's six exploratory behaviors;
and 3) a mapping,M (pi

j ) ! si
j , of each spectrogram column

vector,pi
j , to the most highly activated state,si

j , in the SOM
whenpi

j is presented as an input to the SOM (see Fig. 4). The
mapping process results in a state sequenceSi = si

1si
2 : : : si

l ,
where eachsi

j stands for one of the SOM nodes.
The robot performed this procedure six times, once for

every behavior. It acquired a set of state sequences,f Sj g2000
j =1 ,

for each of its six behaviors. This feature extraction method
was chosen because it does not require a human to select
the acoustic features that the robot will have to use. The al-
gorithm identi�es and computes features in an unsupervised
way. See [13] for further details.

C. Learning Auditory Outcome Classes

The acoustic outcome patterns produced by a given behav-
ior can be clustered automatically to obtain auditory outcome
classes. As the number of interactions increases, the learned
outcome classes gradually become more stable and more ro-
bust to outliers (see section V.C). In our case, the robot's task
was to learn 6 separate sets of acoustic outcome classes—
one for each behavior. More formally, the robot learnedk
outcome classesC = f c1; :::; ck g from the set of SOM state
sequences,f Sj g2000

j =1 , observed during the execution of one
of the 6 behaviors. An unsupervised hierarchical clustering
procedure based on thespectral clusteringalgorithm was
used for this task (spectral clustering is a similarity-based
clustering algorithm [23]). The procedure was performed 6
different times to obtain 6 different sets of acoustic outcome
classes. Figure 5 illustrates the process for only one of them.

Thespectral clusteringalgorithm requires a similarity ma-
trix as its input. The similarity between acoustic outcomes,



Sa and Sb, represented as sequences of SOM states pro-
duced by two different executions of the same behavior was
determined using the Needleman-Wunsch global alignment
algorithm [24] [25]. The algorithm can estimate the similarity
between any two sequences if the data is represented as a
sequence over a �nite alphabet. The general applicability of
the algorithm has made it popular for other applications such
as comparing biological sequences, text sequences, and more
[25]. Computing the similarity of two sequences requires a
substitution cost (i.e., a difference function) to be de�ned for
any two tokens in the �nite alphabet. Here the substitution
cost is de�ned as the Euclidean distance between any two
nodes in the SOM (each node in the 2D SOM has anx and
a y coordinate).

The resulting similarity matrix,W , was used as input
to the unsupervised hierarchical clustering procedure, which
partitions the input data points (i.e., audio sequences) into
disjoint clusters. The spectral clustering algorithm exploits
the eigenstructure of the matrix to partition the data points.
Finding the optimal graph partition is an NP-complete
problem. Therefore, the Shi and Malik [26] approximation
algorithm was used, which minimizes thenormalized cut
objective function. The following steps give a summary of
the algorithm:

1) LetW n � n be the symmetric matrix containing the simi-
larity score for each pair of acoustic outcome sequences.

2) Let D n � n be the degree matrix ofW , i.e., a diagonal
matrix such thatD ii =

P
j Wij .

3) Solve the eigenvalue system(D � W )x = � D x for
the eigenvector corresponding to the second smallest
eigenvalue.

4) Search for a threshold of the resulting eigenvector to
create a bi-partition of the set of acoustic outcomes that
minimizes the normalized cut objective function. Accept
this bi-partition if the resulting value of the objective
function is smaller than a threshold� .

5) Recursively bi-partition subgraphs obtained in step 4
that have at least� acoustic sequences.

The output of this procedure isk classes of acoustic
outcomesC = f c1; :::; ck g, which are represented as the leaf
nodes in a tree structure (see Fig. 5). In our previous work
[14], the value for� used in step 4 was set to 0.995. The
same value was used here as well. The value for� used in
step 5 was empirically set to 40% of the size of the dataset
that was initially passed to the spectral clustering algorithm.

D. Object Representation and Categorization

The frequency with which some acoustic outcomes occur
with different objects can be used to cluster the objects into
categories. For example, when the robot drops a block over a
container, it will hear the sound of the block bouncing inside
the container more often than when it drops the block over
a non-container, in which case it falls on the table.

Given a set ofacoustic outcome classesC = f c1; : : : ; ck g
extracted from multiple behavioral interactions with objects
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Fig. 5. Illustration of the process used to learn acoustic outcome classes.
Each spectrogram is transformed into a state sequence using the trained
SOM, which results in 2000 sequences,f Sj g2000

j =1 , for each behavior. The
acoustic outcome classes are learned by recursively applying the spectral
clustering algorithm on this set of sequences. Acoustic outcomes,C =
f c1 ; :::; ck g, are the leaf nodes of the tree created by the recursive algorithm.

O = f O1; : : : ; O20g, the robot computed an outcome oc-
currence vectorH v = [ hv

1 ; : : : ; hv
k ] for each objectOv . The

value of eachhv
j represents the number of times the acoustic

outcomecj occurred with objectOv , divided by the total
number of interactions (100 interactions in this case). In
other words, each outcome occurrence vectorH v encodes
a probability distribution over the set of outcome classes,
such thathv

j estimates the probability of observing outcome
classcj with objectOv over the entire history of interactions.

The robot formedobject classesby clustering the feature
vectorsH1; : : : ; H20 (one for each of the 20 objects shown
in Fig. 2). The X-means unsupervised clustering algorithm
was used for the procedure. X-means extends the standard K-
means algorithm to automatically estimate the correct num-
ber of clusters in the dataset [27]. The robot used this strategy
to categorize the objects. Six different categorizations were
constructed, one for each of the six exploratory behaviors.
The results are described in the next section.

V. RESULTS

A. Object Categorization

Four of the six behaviors produced acoustic signals that
could be used for object categorization:drop block, shake,
�ip , and drop object. The (mostly silent)grasp and move
behaviors produced acoustic signals that were very similar
for all objects and the algorithm clustered all 20 objects into
the same object class. Therefore, the results for these two
behaviors are not discussed any further. Figure 6 visualizes
the categorizations produced by the other four behaviors.



Thedrop blockbehavior produced three clusters that were
almost homogeneous. One cluster had containers and the
tall metal non-container (the only misclassi�ed object); one
cluster had the rest of the non-containers; and one cluster
had the three soft material container baskets. The difference
between the softness and hardness of the objects' materials
was distinctive enough to create two container categories
(cluster 1 and cluster 3 in Fig. 6). The two wicker baskets
and the styrofoam bucket are made of soft materials which
muf�ed the block's sound. When the block fell into a hard
container it bounced around longer and produced a louder
sound.

The shakebehavior produced results similar to the drop
block behavior. In this case, however, there were only two
clusters and the three soft material container baskets were
incorrectly classi�ed as non-containers. These three objects
produced very little sound when shaken, even if the block
was inside them. Hence, they sounded similar to the non-
containers, which seldom made noise during this interaction.
The tall metal non-container was again misclassi�ed.

The�ip behavior was the most reliable way to discriminate
between containers and non-containers in our experiments.
It produced a perfect classi�cation. Flipping the object over
produced a distinct sound in the case of containers as the
small block fell onto the table. In the case of non-containers,
no sound was generated as the block was already on the table.

The drop object behavior resulted in clusters that were
completely heterogeneous. The behavior did not produce dif-
ferent acoustic outcomes for containers and non-containers.

B. Evaluating the Categorization using Information Gain

The category information gain was computed in order
to check whether the robot was able to extract meaningful
object clusters. The information gain captures how well the
object categories formed by the robot resemble the categories
speci�ed by a human. The information gain is high when
the category labels assigned to the objects match human-
provided category labels. It is low otherwise. In other words,
if the information gain is high, then the robot has categorized
the objects in a meaningful way (even though the robot does
not know the human words corresponding to the categories).

Let � ( f ) = [O1 : : : OM f ] de�ne an object categorization
for behaviorB f , whereOi is the set of objects in thei th

cluster. Letpi
c and pi

nc be the estimated probability that an
object drawn from the subsetOi will be a container or a
non-container, respectively. Given a cluster of objectsOi ,
the Shannon entropy of the cluster is de�ned as:

H(Oi ) = � pi
clog2(pi

c) � pi
nc log2(pi

nc )

In other words, an object cluster containing mostly con-
tainers or mostly non-containers will have low entropy,
while a cluster containing an equal number of containers
and non-containers will have the maximum entropy. Hence,
the information gain for the entire object categorization
� ( f ) = [O1 : : : OM f ], learned using behaviorB f , is given
by the following formula:
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Fig. 6. Visualization of the object categories formed by the robot for
four of the six exploratory behaviors. The quality of the classi�cation
depends on the behavior that was performed. The�ip behavior produced a
perfect classi�cation. Thegraspandmovebehaviors both produced only one
cluster with all twenty objects in it so their results are notvisualized. The
other behaviors produced clusters that were not always so pure. Incorrect
classi�cations (determined from ground truth category labels provided by a
human and the majority class of the cluster) are framed in red.

IG (� ( f ) ) = H(O) �
M fX

i =1

jO i j
jOj

H (Oi )

To get a baseline information gain value for comparison,
the information gain was computed for a random labeling.
That is, the values forpi

c and pi
nc were estimated after

randomly shuf�ing the labels of the objects in the clustersOi

(for i = 1 to M f ) while preserving the number of objects
in each cluster. The procedure was repeated 100 times to
estimate the mean and the standard deviation. Figure 7 shows
the information gain for each categorization and compares it
to the corresponding baseline average random information
gain.
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Fig. 7. Information gain for the categorizations formed by each of the 6
behaviors after the robot has performed 100 interactions with each of the 20
objects. For comparison, the �gure also shows the average information gain
for a random categorization, which was computed by shuf�ing the category
labels of the objects in each cluster 100 times and estimating the mean and
the standard deviation of the information gain. Human-provided labels were
used for this evaluation procedure (these labels were not used in any part
of the robot's learning process). Three behaviors had an information gain
of zero, which is denoted by the * character.

The �gure shows that the�ip and thedrop blockbehaviors
have the highest information gain with respect to the average
random labeling. The information gain forshakeshows that
it performed signi�cantly better than chance, albeit not as
well as we expected. The remaining three behaviors had
zero information gain, illustrating that they did not produce
meaningful categorizations. These results show that some
behaviors can be used to form meaningful object categories.
The next section shows how the number of interactions with
each object affects the quality of a categorization.

C. Categorization Performance vs. Number of Interactions

The number of behavioral interactions used by the cate-
gorization procedure was varied to determine if the quality
of a categorization improves when more interactions are
performed. Presumably, for behaviors that have information
gain greater than zero the quality of the categorization with
respect to human labels would improve as the number of
interactions increases. This section tests this hypothesis.

The evaluation was performed by randomly sampling
smaller datasets from the larger dataset described above.
More speci�cally, N interactions were sampled at random
from the 100 interactions performed with each of the 20 ob-
jects. A new categorization was formed from this new dataset
by: 1) re-training the SOM; 2) converting the spectrograms to
state sequences; 3) forming outcome classes from the set of
state sequences using spectral clustering; and 4) categorizing
objects by their acoustic outcome frequencies. The qualityof
the categorization was determined using the information gain
formula described in the previous section. The process was
repeated 10 times for each value ofN in order to estimate
the mean and standard deviation of the information gain.
Figure 8 shows the results.
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Fig. 8. Information gain for the categorizations formed by thedrop block,
shake, and�ip behaviors as the number of interactions with each object is
increased. This graph was computed by randomly samplingN interactions
from the 100 interactions with each object and re-running the learning
algorithms on the smaller dataset. This process was repeated 10 times for
each value ofN to estimate the mean and standard deviation. Human-
provided category labels were used to compute the informationgain.

This experiment was performed only for the three behav-
iors that produced categorizations with non-zero information
gain (drop block, shake, or �ip ) using the entire dataset (see
Fig. 7). Figure 8 shows that the information gain of the
resulting categorizations �rst increases and then converges
after only 40 interactions. Thedrop blockbehavior requires
60 interactions. The �gure also shows that the variance of the
information gain with respect to human labeling converges
to zero as the number of interactions increases. This is true
for all three behaviors.

VI. CONCLUSIONS AND FUTURE WORK
This paper described a framework that allowed a robot

to interactively categorize objects based on the acoustic
outcomes that they produce when the robot applies different
exploratory behaviors on the objects. The framework is based
on the idea that knowledge about objects should be grounded
in the behavioral and perceptual repertoire of the robot [8]
[9]. A large-scale experimental study with an upper-torso
humanoid robot was conducted to evaluate this framework.
A container/non-container categorization task with 20 objects
was chosen for this evaluation. The fact that meaningful
categories were produced with so many objects lends further
credence to the hypothesis that a robot can interactively
categorize objects using the frequency with which different
perceptual outcomes occur with each object.

The results demonstrate that the categorization accuracy
is highly dependent on the behavior that the robot used to
produce the categorization. Some behaviors simply capture
the `container' property better than others. Interestingly, the
behaviors that best discriminated between containers and
non-containers caused the block to become contained (which
occurred during thedrop block behavior) and to become
uncontained (which occurred during the�ip behavior). The
drop objectbehavior did not produce outcomes speci�c to
the container object category. This suggests that the inter-



active behaviors that can best discriminate between object
categories are behaviors that capture some category-speci�c
property. Indeed, the results show that the robot performed
well when category-speci�c interactions were used.

It was also shown that the robot can split the objects
into meaningful categories even though it does not know the
mapping between these categories and the human words for
them. What the robot does know, however, is that the objects
in a given category produce similar distributions of acoustic
outcomes. The robot also knows that the differences between
categories can be explained in terms of the frequencies of the
detected acoustic events.

The are several possible directions for future work. For
example, the framework described here performed well with
data from a single behavior and a single sensory modality
(audio). It would be desirable to investigate how a robot can
combine its observations from executions of different behav-
iors to come up with a single, uni�ed object categorization,
instead of one separate categorization for each behavior.

Future work should also examine how a robot can learn
object categories without using explicit object IDs. Another
direction for future work is to investigate how to combine
observations from multiple modalities (e.g., vision and au-
dio). Combining information from multiple modalities is
useful because one modality may capture discriminative
information that another modality may miss. For example,
while vision can discriminate between containers and non-
containers using themovebehavior [22], audio cannot.
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