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Abstract—This paper proposes a method for interactive surface tactile feedback are fundamental for infants’ object pptica
rec%gnitionland surface c%telgoriz?]tion Ey a humanoid rodbot uhsing [6], [7].
a vibrotactile sensory modality. The robot was equipped with an ; T ; _
artificial fingernail that had a built-in three-axis accelerometer. Inspired by these fm.d.ln.gs .from ps_ychology, Fhl.s pape.r pro
The robot interacted with 20 different surfaces by performing poses the use of an artificial flngerngll with a bu_'lt"n theeas
five different exploratory scratching behaviors on them. Surfag  accelerometer sensor for vibrotactile perception of commo
recognition models were learned by coupling frequency-domain household surfaces. The accelerometer sensor can measure
ana'K.SiS IOf the Vi?ratifilqs detected by tthe ?Ccebr%met?ngl\}lt)h vibrations in the finger as the robot scratches different sur
machine learning algorithms, i.e., support vector machine ;
and k-nearest neighbor k-NN). The results show that by applying faces. F(.)”O\ng research from develppmental psychology, .
several different scratching behaviors on a test surface, theobot humaQOId robpt was programmed W'th exploratory scratching
can recognize surfaces better than with any single behavior alone. behaviors, which were used to recognize surfaces and to form
The robot was also able to estimate a measure of similarity a hierarchical surface categorization. To solve thesestask
between any two surfaces, which was used to construct afrequency-domain analysis was applied on the acceleramete
grounded hierarchical surface categorization. measurements in order to extract spectrotemporal features

Index Terms—Behavior-Based Systems, Force and Tactile Sens-from each interaction. The Support Vector Machine and the

ing, Learning and Adaptive Systems, Recognition. k-Nearest Neighbors learning algorithms were used to learn
surface recognition model based on these features. Usig th
. INTRODUCTION learned models, the robot was able to estimate the sinyilarit

p@tween any two surfaces and to learn a hierarchical surface

detecting and learning the properties of everyday objdats. categorizati_on grounded in its own experience with t_hem.
example, one only needs to slide his index finger across alwenty different surfaces, which were made of various ma-

novel object in order to recognize its texture. Not Surpigsy, terials, were used in the experiments. The results showthieat

there has been a growing interest in developing sensors 4RROt recognized surfaces with high degree of accuracy. The

algorithms that would enable a robot to use and interpréiteac "€SUlts also show that the use of multiple exploratory bgtav
feedback while manipulating objects [1]. can be crucial for achieving good recognition performance.

Psychologists and neuroscientists have discovered two dif 1. RELATED WORK

ferent sensory modalities that are used to encode surfacie:_ di . hol h h that the tactil
properties: aactile sensory modality for coarse surfaces and Indings In psychology have shown Inat the tactiie sensory

a vibrotactile sensory modality for fine surfaces [2]. TheMedality is necessary to capture many object properties, (e.

former involves specialized cortical neurons that detpetisl roughness, texture, etc.) [8], [9]. More specifically, fuye

variations through slowly adapting SA1 mechanoreceptors 0gists and neuroscientists have demonstrated that cedain

the skin [2]. The vibrotactile sensory modality, on the (ntheCeptors in the skin are capable of detecting minute vibratio

hand, is facilitated by cutaneous vibrations detected k& s the finger sli_des across a surface, thus e_nabling digimi
Pacinian corpuscles mechanoreceptors [2], [3]. tion between fine textures [2], [3]. According to Lederman

Other research has shown that humans explore the tacﬂréd Klatzky [4], tactile object exploration is facilitatey

properties of objects through the use of a number of behsn,vio?)(plor""tOry proceduresFor example, to detect the roughness

which are commonly referred to asxploratory procedures of a surface, a person might slide his finger across it; to

[4] or exploratory behaviorg5]. For example, scratching andetect its temperature, a person might touch it, etc. [10].

object can inform us of its roughness, while lifting it CanStudles have also shown that tactile exploratory behavmes

inform us of its weight. Research in developmental psyoimlo commonly used by infants when exploring a novel object [6].

has repeatedly shown that exploratory behaviors coupléa WFor example,_ Stack and Tsonis [7] h_ave reported that, n _the
absence of visual cues, 7-month-old infants use more efficie
Manuscript received July 31, 2010; revised December 23, 28d€epted tactile exploratory strategies and can perform tactilefaser
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In humans, the sense of touch is fundamental for bo



an artificial skin that can cover large patches of the robot’s
body [11], [12]. The robotic skin is designed with flexible
and modular components that can be easily reconfigured to
the body morphology of a new robot. An early prototype of
the skin has already been installed on the iCub robot. Amothe
goal of the project is to use the skin sensor during social
learning tasks, in which a human provides corrective feeklba
by touching the robot’s hand to indicate a desired movement
direction [13], [14].

Other research has focused on developing tactile-sensing
technologies for robotic fingers [15], [16], [17], [18], [IL9
[20], [21], [22]. For example, Howe and Cutkosky [16] have
developed a robotic finger with an artificial rubber skin,
equipped with a piezoelectric polymer transducer that mea-
sures the changes in pressure induced as the sensor slites ov
a surface. It was shown that minute features (as smatlfas
um) could be detected on surfaces by sliding the sensor across _ : : o
them. Computer vision methods for strface perception hafi L., Humanoi obot veed 1 lne expermens, which i shoere
been explored as well [23].

Tanakaet al. [15] developed an artificial finger that uses

strain gauges and polyvinylidene fluoride (PVDF) foil tque|l it could recognize the identity of a particular surface
generate tactile feedback when sliding across a surface.gien vibrotactile sensory feedback. For the second task —
subsequent experiments, they demonstrated how their Iseng@face categorization — the robot was tasked with 1) gragipi
can detect roughness and temperature changes in the ®Xxt4(ffaces into category types based on its sensorimotorriexpe
of six different fabrics [24]. A similar sensor was develdpe ence with them and 2) recognizing the category memberships
by Hosodaet al. [17]. By applying two different exploratory of novel surfaces. To solve these problems, the robot used
behaviors -pushingandrubbing— their robot was able to dis- fiye exploratory scratching behaviors, which it applied he t
tinguish between five different materials. A robotic fingettw gifferent surfaces that it explored. Twenty different s
randomly distributed strain gauges and PVDF films was alggre used in the experiments, which is one of the largest
proposed by Jamali and Sammut [22]. In their experimenigymber of surfaces reported in the robotics literature te.da

a Naive Bayes classifier coupled with the Fourier coeffisenthe next section describes the artificial fingernail sensar a
of the sensor's output was used to recognize eight differafie experimental setup.

surface textures.

Three-axis force sensors have also been used for tactile
perception. For example, Beccat al. [25] used a 3-axis A. Robot
microelectromechanical-system (MEMS) sensor to perform The robot used in the experiments was an upper-torso
slip detection. A similar sensor was also used by de BoissiBumanoid robot with two Barrett whole arm manipulators
et al. [26] to capture the high-frequency vibrations that occywAMSs) for arms. Each WAM was equipped with the three-
when rubbing a surface. In that study, the force sensor Wixsger Barrett hand (BH8-262). Fig. 1 shows the robot per-

mounted on a plotter printer and was able to distinguigbrming an exploratory scratching behavior on one of the 20
between ten different paper surfaces with reasonable acgursurfaces used in the experiments.

(approximately 61%).

In another line of research, inexpensive accelerometers h% .

. Vibrotactile Sensor

been proposed by Romaret al. [27], [28] for the purposes . ) ) S
Cutkosky [29] have also developed a sensor that can det@fnail made of ABS plastic and the ADXL345 3-axis digital
tactile vibrations using a three-axis accelerometer, iging accelerometer mounted on the EVAL-ADXL34’§Z evaluation
feedback that was useful for detecting if an object has movegard. Both the accelerometer and the evaluation board were
after being grasped (i.e., slip detection). They estimaked manufactured by Analog Devices. The accelerometer’s autpu
the sensor’s output was most dependent on the sliding spe@# Was400.0 Hz using ten-bit resolution with a range of
somewhat dependent on the surface roughness, and leiaétd for each axis. The ADXL-345 accelerometer uses an
dependent on the applied normal force [29]. on-board digital low-pass filter but does not have any analog

The sensor presented in this paper uses a similar thré@li-aliasing filters.
axis accelerometer to capture vibrotactile feedback and wa The ABS plastic fingernail was designed with Computer-
previously introduced by Sukhost al. [30]. In contrast with aided design software and printed using a rapid prototyping
previous work (including [30]), the humanoid robot desedb 3-D printer. The sensor, along with its dimensions, is shown
here performed botlsurface recognitiorand surface catego- Fig. 2. The EVAL-ADXL345Z accelerometer evaluation board
rization. For the first task, the robot was evaluated on howas mounted on the fingernail, which, in turn, was attached to

IIl. EXPERIMENTAL SETUP
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Fig. 2. The artificial fingernail with the three-axis accel@eter sensor. The
thickness of the fingernail wa®3175 cm (1/8th of an inch).
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2) thin blue mat 3) soft cloth 4) bumpy leather 5) thin floor mat

l) thick floor mat |

Fig. 4. Before and after images for two of the scratching ttjees
performed by the robot on thglastic kitchen roll(i.e., surface 9).

TABLE |

6) bulletin board
) bulein boar THE FIVE EXPLORATORY SCRATCHING BEHAVIORS

7) corduroy 8) leather (flat) 10) table

| Behavior || sliding Direction | Duration

lateral-fast left to right 3.9 sec

11) bed sheet 12) back of 7) '13) back of 5) 14) sparkly cloth | |15) cotton wool lateral-medium left to right 7.5 sec
EEEE lateral-slow left to right 14.7 sec

medial-fast back to front 4.6 sec

| ; medial-medium back to front 7.9 sec

16) plastic pattern | | 17) white paper 18) yellow paper | | 19) bubble wrap

e.g., the two types of paper (i.e., surfaces 17 and 18) and the

two doormats (i.e., surfaces 1 and 5). Some of the surfaces

were simply the backsides of other surfaces, such as the red
) , _leather (i.e., surface 8) and its backside, the cotton wioel, (

Fig. 3. Twenty surfaces scratched by the robot. 1) Thick float; 2) thin f 15). A trol diti th bot al rat

blue mat; 3) soft cloth; 4) leather with bumps; 5) thin floor mgt;bélletin surface )_' S a Con_ rol condition, the robot also pe m?

board:; 7) corduroy; 8) leather (flat); 9) plastic kitchetti;r@0) table; 11) bed the scratching behaviors when no surface was present (i.e.,

sheet; 12) back of corduroy; 13) back of thin floor mat; 14)kleith sparkles; scratching in mid air), which was recorded as fHst surface

15) cotton wool (back of 8); 16) plastic pattern (back of 4§) paper, white; . ’ .

18) paper, yellow; 19) bubble wrap; 20) wood. In additior21ast “surface” in the dataset. For the rest of the paper, we will Gsavhere

was added to the dataset as a control condition, which qmreted to the |S| = 21, to denote the set of surfaces that the robot interacted
robot scratching in mid air. with.

the middle finger (i.e., F3) of the robot’s left hand such fiteat D. Exploratory Behaviors
tip protruded from the robot's finger. The sensor was attdche The robot’s set of behaviors, i.e3, consists of five different
to the finger with several layers of electrical tape, whichsweeXploratory scratching actions. The first three behaviges a
sturdy enough to prevent it from sliding (see Fig. 4). When tHateral scratches (i.e., right to left) performed at three differen
robot performed a scratching behavior, the vibrations @f tivelocities: slow, medium, and fast. The other two behavioes
fingernail were captured by the attached accelerometer. Thedialscratches (i.e., back to front) performed at two different
accelerometer data were transferred to the PC over a ualveréelocities: fast and medium. In other words, each of the five
serial bus (USB) at 400 Hz using the Arduino Duemilanov@ehaviors is a variation of a prototypical scratching mofio
microcontroller. The sampling-frequency limitation wased Which is attained by varying the direction or the speed ativhi
to the limited serial port bandwidth of the Arduino boardtthdt is executed. Fig. 4 shows before and after images for two
was used to communicate with the accelerometer. SCfatChing behaviors. The behaviors and their duratioes ar
listed in Table I.
The behaviors were encoded as trajectories using the low-
level Barrett WAM API (btclient), which uses a proportional
The robot performed exploratory scratching behaviors antegral-derivative (PID) controller. One lateral trajiey and
the 20 different surfaces shown in Fig. 3. The surfaces wevee medial trajectory were recorded, and their speeds were
made of materials such as cloth, leather, wood, rubber,rpaperied to obtain all five exploratory behaviors. The default
and plastic. Some of the surfaces were specifically chosenviglocity parameter for trajectory playback in the Barre®IA
be similar to each other and, thus, were hard to distinguisiias used for the medium-velocity setting. The fast velocity

C. Surfaces



was set by doubling this parameter, while the slow veloci 2 ~‘ ‘ ‘ ‘ : ‘ ‘
was set by halving it. For all scratching behaviors, the fip (5 **] Bl

the robot's finger slid across approximately 12 inches of t§ os ‘“M‘I “ lj’““ ’H‘”de“‘wmﬁ M '(‘ L
surface. The behaviors were not designed to maintain canstg o ‘ ! ' | IJ !
orientation of the finger relative to the surface as our meth< ™| ' '
does not rely on that. Instead, during the execution of ea 15! e L e L . L .
trajectory an additionab N-m torque was applied on joint 1 ' “Time (seconds) o
(shoulder joint) in the downward direction to ensure contac a) Raw 3-axis accelerometer readingys
with the surface at all times.

E. Data Collection

Each of the 5 behaviors i§, was performed 10 times by
the robot on each of the 21 surfacesdn which resulted in
a total of 5 x 21 x 10 = 1050 behavioral interactions (or
trials). During theith trial, the robot recorded the currently™ -os

"
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Magnitude Deviation ( g)
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o 0.5 1 1.5 2 25 3 3.5

executed behavioB; € B, the current surface; € S, and ) _ Time (seconds)
the current accelerometer readings. The sensor readings b) Magnitude deviation vectdD; computed fromA;

were represented a&; = [al,a?,... a"], wheren; is the
number of readings recorded during trialand eacha’ € R3
denotes the measurements for each of the three accelerom
axes.

To minimize transient noise effects due to wear and tear
the fingernail, the surfaces were swapped throughout the dﬁt
collection processes. In other words, the surface was @thng |§ s a.s ==
after the robot scratched it once with all five exploratory Time (seconds) Temporal Bins
behaviors and not scratched again until the robot scratch
all other surfaces.

P (Hz)

qiency

Frequency Bins

%Sl Spectrogram oD; d) Histogram FeatureX;

IV. LEARNING METHODOLOGY Fig. 5. Visualization of the feature extraction processdubg the robot to
. recognize surfaces: a) the raw sensor readifig$or each accelerometer axis
A. Feature Extraction over the course of an interaction with a surface; b) the coegputagnitude

. . . jation vectorDj; c) the discrete Fourier transform &@; with frequency
To recognize surfaces based on vibrotactile feedback, soﬂﬁ ponents in the range of 4-200 Hz: and d) 2-D spectrotempistigram

features were first extracted from the accelerometer ddta. TeaturesX; computed from the spectrogram. In this particular example, the
first step in this process was to convert the acceleromedel replastic kitchen roll(surface 9) was scratched with theteral-fastscratching
ings A; into a magnitude vectoM; = [m!,m2,...,m™], Mot
where eachn’ € R captures the magnitude of the acceler-
ation vector at samplg, while ignoring the direction of the magnitude-deviation vectdD;. It should be noted that this
acceleration. This was done using the L2 vector norm giV%‘just one way to process the raw accelerometer data (for a
by review of alternative approaches, see [31]).
N T j j j While the spectrogram contained a lot of useful information,

m’ = [al]z = \/(a‘”)2 +(ay)? + (az)? its dimensionality was fairly high, thereby making it diffit to

The next step was designed to capture the high-frequengse with standard machine learning algorithms. To overcome
components of the acceleration data. To do this, the terhpatidis, a smaller set of spectrotemporal features were exiac
sequenc@I; was smoothed using a moving average filter withising a 2-D spectrotemporal histogram — time (i.e., hottiabn
a window of length 100 (i.e.0.25 s, since the data wereaxis of the spectrogram) was discretized iktobins, while
recorded at 400 Hz), resulting in the smoothed magnitudee frequencies (i.e., vertical axis of the spectrogramjewe
acceleration vectoM;. A magnitude-deviation vectdd; was  further discretized intdc; bins. In this paperk; was set to
computed asD; = M; — M; in order to capture vibrations 5 andk; was set to 25. Thus, each vibrotactile reading was
detected by the accelerometer. ultimately represented by a feature veciy € R°*25, Fig.

Fig. 5 shows the raw accelerometer readingsover the 5 shows the feature-extraction routine, which starts wité t
course of an interaction, and the resulting magnitude devia accelerometer readings; and ends with the spectrotemporal
vector D;. OnceD; was computed, its discrete Fourier transhistogram featureX;.
form with 129 frequency bins was computed, thereby resulting
in a spectrogram, which denotes the intensities of differe
frequencies over time. Fig. 5(c) shows the spectrogram ef t

E. Surface-Recognition Methodology

The primary task of the robot was to recognize the correct
A check was performed to verify that sensor wear and tear, jf mms sSurface textures € S given spectrotemporal featureX;

undetectable at the input feature level. If the sensor iaging over time, then  axtracted from vibrotactile feedback. To do this. for each
two consecutive trials with the same surface and the same ioehshould ’

produce feedback signals that are more similar than the onesiped by two behaViO_rb € B, the robot leamed_ a recognition modgt,
trials that are temporally further apart. No such relatiopshas found. that estimated the surface class, given spectrotemparirees



extracted after performing behavidr on the test surface. the model's estimated accuracy. This procedure allowed the

More specifically, given featureX; extracted after performing robot to estimate the efficacy of each behavior for solvirg th

behaviorb on a test surface;, the modelM, estimated the surface recognition task.

probability Pr,(.S; = s|X;) for all surfacess € S. Next, let X1, Xas, ..., XN be spectrotemporal features ex-
Two different machine learning algorithms were evaluatettiacted after performing behaviobs, b, . . . , by, respectively,

as implementations of the modelg,. The firstk-NN, which on the test surfaces;.,; € S. Given these data, the robot

is @ memory-based algorithm, and which does not build assigned the prediction to the surfac¢hat maximized:

explicit model of the data [32], [33]. Instead, given a testad N

point, k-NN flnqls _thek: cIo_sesfc neighbors in its training set and Z wy, Pry, (Srest = 5|X5)

outputs a prediction, which is a smoothed average over those

neighbors. In this study, the parametemwas set to 3. Class-

label probabilities for each surfacee S were computed by

counting the labels of thg neighbors. For example, if two of

the three neighbors had class laBghenPr(S; = A) = 2/3.

=1
In other words, given one or more interactions with the
same surface, the robot combined the predictions from dif-
ferent behavioral models using estimates for the relighdf
Similarly, if the class label of the remaining neighbor w&s each_ ghannel of information. The we-|ghted combination of
predictions ensures that a model that is not useful for sarfa

then Pr(S; = B) = 1/3. The k-NN implementation included " . . :
in the WEKA machine learning library [34] was used to c)btairr]ecognmon will not dominate over other more reliable misde

the results.

. The se'con'd algorithm that we gvaluated was an S\(M clas- Surface Categorization
sifier, which is a supervised learning model that falls irite t
family of discriminativemodels [35]. Given a labeled training N addition to surface recognition, the robot was also teske
set, the SVM algorithm learns a linear decision functiort th&ith learning surface categories. The method consistedof t
can accurately discriminate between inputs with diffegass Steps: 1) estimate a measure of similarity for each pair of
labels. For many problems, however, a good linear separati@Hrfaces using the surface recognition models and 2) appli-
may not exist in the input space. To resolve this, the labelégtion of unsupervised hierarchical clustering on the anef
inputs can be mapped into a (possibly) higher-dimensiorfimilarity matrix to construct surface categories.
feature space, e.gX; — ®(X;), where a good linear decision The intuition behind this approach is that if two or more
function can be found. This mapping can be defined implicitigurfaces are not distinguishable by the robot, then theylgho
using a kernel function, which specifies how similar twdye considered similar and placed in the same surface cgtegor
inputs X; and X; are. In this case, the output of the kernelo get a measure of similarity for each pair of surfaces, the
function K (X;, X;) replaces the dot produd;TX; in the robot performedsurface-basedcross-validation, i.e., during
dual-quadratic optimization problem solved by the SVM (fogach iteration, the robot’s models were trained on data from
details, see [35] and [36]). In this study, the polynomiaines |S| — 1 surfaces and tested on the remaining one. Since the
function with exponent 2 was used to estimate the similaritgst surface was not present in the training set, this pureed
between a pair of inputX; andX; forced a recognition error, but it also showed which of the
T ) |S| — 1 training surfaces was most similar to the test surface.

KX, X) = (X7 X; +1) Let C be the resultingS| x |S| confusion matrix such that

This kernel function was chosen because it is the mdd&ch entnyC;; specifies how often surfadewas misclassified
commonly used one in the literature. Other kernel functior$ surfacej. Thus, each valu€’;; is an integer in the range
(e.g., RBF kernel) available in the WEKA library were als®f 0-50, since two surfaces can be confused at most 50 times
explored, but generally resulted in lower performance. THaith five behaviors and ten trials per surface. Because most
pairwise-coupling method of Hastie and Tibshirani [37] waglustering algorithms require the input similarity mattix be
applied to generalize the original binary classification\sy Symmetric, anothefS| x |S| matrix, i.e., C’, was computed
algorithm to the multiclass problem of surface recognitiorfuch that each entrg}, = 0.5 x Cj; + 0.5 x Cj;. Finally,
Logistic regression models were fitted to the outputs of tiBe values inC’ were linearly scaled so that each entry was
SVM, as described in [34], in order to obtain a probabilistifetween0.0 and 1.0, by dividing each valueC;; by 50.

estimatePr,(S; = s|X;) for the surface type of a test data?S required by the clustering algorithm that was used, the
point. diagonal values of the matrix were set 1d). The result of

this procedure was a symmetric similarity matiW, which
was used as input to the unsupervised clustering algorithm.
To construct a surface categorization, the robot used the
So far, we have described how the robot can learn a surfagectral clusteringalgorithm, which falls into the family of
recognition modelM, for each behaviob € B. The robot graph-basedor similarity-basedclustering algorithms [38].
also needs to be able to efficiently combine predictions froiven a similarity matrix, i.e.,W, the algorithm partitions
all five models after performing its set of exploratory belbes the set of surfaces into disjoint clusters by exploiting the
on a given surface. To do this, during the training stageh eaeigenstructure of the matri¥v. Because finding an optimal
model M, performed its own cross-validation on its traininggraph partitioning is NP-complete, Shi and Malik [39] pro-
data, and computed a reliability measurg corresponding to posed an approximation that optimizes thermalized cut

C. Combining Predictions from Different Behaviors
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TABLE Il
SURFACE-RECOGNITIONACCURACY FROM ASINGLE BEHAVIOR . 8or =8 1
%) B = el
S o5l e ,
Behavior || k-Nearest Neighbor| Support Vector Machine| 3" - o--"" -0
(3] - .-
lateral-fast 59.5% 64.8% < or Pl P - 1
lateral-medium 52.4% 65.7% £ 65f ,\/B _et ]
lateral-slow 46.7% 58.6% §> . PR
medial-fast 43.8% 56.7% 3 o L7
medial-medium 39.5% 45.7% ® 55t 7 1
Q
[ Average || 48.4% [ 58.3% | & ool .’ : |
2 o -
U\g sk - © - k—Nearest Neighbor |
°© =B+ Support Vector Machine
objective function. The algorithm, can be summarized with *° 1 2 3 4 5
the foIIowing steps. Number of Behaviors Performed on Test Surface

- - P Fig. 6. Surface recognition performance as a function of thmber of
1) L.et_VV_”X” be the Symme_mc matrix containing thedifferent exploratory behaviors performed on the test sugfd he predictions
similarity score for each pair of surfaces. of the behavior-specific models are combined using a lineaghted combi-
2) LetD, ., be the degree matrix oW, i.e., a diagonal nation as described in Section IV-C.
matrix such thatD,; = Zj Wi;.
3) Solve_ the eigenvalue syste(ﬂD ~ W)z = ADz for k-NN algorithm by roughly10%. Yet, there is still significant
the eigenvector corresponding to the second smalleg .
. . = room for improvement.
eigenvalue and use it to bipartition the graph.

4) If necessary, recursively bipartition each subgraph ob- N . ]
tained in Step 3. B. Surface Recognition from Multiple Interactions

The algorithm recursively bipartitions the graph induced b The next experiment investigated whether the robot can
the similarity matrixW until a stopping criterion is reached,improve its surface recognition rate by performing mutipl
thereby producing a hierarchical clustering. The code thehaviors on the test surface and then combining the regulti
the spectral clustering algorithm used in our experimests Rredictions. For example, the robot should be able to reizegn
listed on the WEKA machine learning repository website (séesurface with a higher accuracy rate if it performs a seqeienc
http://www.cs.waikato.ac.nz/ml/weka/inderlated.html). The Of two different behaviors (e.g., fast, followed by medium
algorithm is recursively applied until the size of each salpyp 1ateral scratch) than with either behavior alone.
falls below five nodes or until the spectral clustering aign To test this hypothesis, the number of behaviors that the
fails to find a bipartition with a high score according to théobot performed on a surface at test time was varied from
normalized cut objective function. The output of this prdeee 1 (the default, which is used to generate Table II) to 5 (i.e.,

is a hierarchical taxonomy (i.e., a tred}, which specifies the Performing all five exploratory behaviors on the test sujac
learned surface categorization. When performing two, three and four interactions with the tes

surface, all possible combinations of behaviors were etatl

and the average recognition rate was recorded. Whenever
the robot was performing two or more exploratory behaviors

A. Surface Recognition from a Single Behavior on the test surface, the predictions from the corresponding
I{@cognition models were combined, as described in Section
W.C.

V. RESULTS

The first experiment evaluated the two machine learni
algorithms (k-NN and SVM) on the task of surface recognitioh’
from a single behavioral interaction. The results are regubr
in terms of recognition accuracy

Fig. 6 shows the recognition rates for this experiment with
the k-NN and SVM learning algorithms. As more behaviors
o are performed on the test surface, the recognition rateasas
# correct predictions _ dramatically. Using SVM, the recognition rate increases to
# total predictions 80.0% after performing all five exploratory behaviors. This
The accuracies of the models1, were estimated using apparent boost of the recognition rate is consistent widvipr
ten-fold cross validation (i.e., the full dataset was spiib ous results on interactive object recognition tasks, wialsio
ten folds and at each evaluation, nine of those were used #how that applying multiple behaviors can greatly improve
training and one was used for testing). object recognition accuracy [40], [41], [42]. Thereforebots
Table 1l shows the surface recognition rates for each of tis@n achieve higher tactile recognition rates if they carfioper
two classification algorithms and for each of the five behavio different types of scratching behaviors, as opposed togost
For comparison, given thakS| = 21, a chance classifier An additional experiment was performed to test if the same
is expected to achievé/|S| = 4.76% surface-recognition type of recognition boost can be obtained by combining two
accuracy. The robot was able to achieve recognition raties sinstances of thesame scratching behavior instead of two
stantially better than chance with all five exploratory behadifferentscratching behaviors, which are all performed on the
iors. For both lateral and medial scratching behaviorstefas same surface. To do this, the dataset was split into five folds
scratching resulted in better model performance. On aeeragach containing two trials with all five behaviors per suefac
across all five behaviors, the SVM algorithm outperformeal tHDuring each round of evaluation, the model was trained on

% Accuracy =
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Fig. 7. Comparison of the improvement in classification acgunaben
combining feedback from two executions of teamebehavior versus two
executions ofdifferent behaviors. Regardless of the learning algorithm (i.e.,
k-NN or SVM), the classification improvement is higher when camty
feedback from two distinct scratching behaviors.

four of these folds (i.e., eight trials) and tested on the figlsl

(i.e., two trials). Next, the model’'s outputs were compui@d Fig. 8. Confusion matrix obtained after evaluating the rsbetcognition

all five possible combinations of the same behavior, as wa]pdel when all five exploratory behaviors were applied on tet surface.
f Il (10 — 4 ibl binati f diff The matrix specifies how often a surface was classified cdyréat., diagonal
as for a (2) — 5 = 40 possible combinations of di erententries) or mis-classified as another surface (i.e., off aliaf entries). Dark

behaviors present in the test set. These outputs were cethpablors indicate high values, while light colors indicateviwalues.

with the true labels and used to estimate the improvement in

recognition accuracy, as described below.

Let acc(B;, B;) be the expected recognition accuracy whephows that most errors involve pairs of surfaces with simila

combining feedback from behavior®; and B;, and let textures.

acc(B;) and acc(B;) be their individual accuracies. The For example, thewhite paper(i.e., surface 17) and the

recognition improvement (i.e.Rl;;) obtained when using yellow paper(i.e., surface 18) are often confused with each

any two behaviorsB; and B; (which could be the same other. This is to be expected, however, as the two papers are

or different) can be measured relative to the classificatiémost identical. Similarly, theoft cloth(i.e., surface 3) and

performance of the individual behaviors, i.e., the cotton wool cloth(i.e., surface 15) are also confused with
each other. Surfaces that are unique within the dataset (e.g

ace(B;) + acc(Bj) o )
surface 9, theplastic kitchen rol) are generally recognized

) ] _2 o with higher accuracy. The results also show that table

This form.ulat|on aIIows. us to test |f_ combining feedb_gclgurface (i.e., surface 10) is often confused with the twesyp

from two different behaviors results in greater recogmitio ¢ paper, as well as thbed shee(i.e., surface 11). This is

boost than combining feedback from two executions of thiely due to the fact that those surfaces are rather thin, an
same behavior. The results of this evaluation are showngn Fih,s some of the detected tactile feedback is due to the tabl
7. The average recognition improvement when using the Sa@&face on which they were placed.

behavior was estimated from five samples, i.e., one for éach 0 gyera||, the confusion matrix shows that the errors of the
the fl\{e.scratchmg behaviors. The improvement attainedwhgypot's recognition models are not random in nature. Irdstea
combining two different behaviors was estimated from tefhenever an error is made, the predicted surface is often
samples, i.e., one for each unique pair of behaviors. Fdt bfomewhat similar to the actual one, in terms of material @nd/
learning algorithms, the classification improvement isheig (exyre. This suggests that the recognition models could be

when two different behaviors are applied on the test surfaggeq to estimate a measure of similarity between surfaces
as opposed to applying the same behavior twice. based on vibrotactile data.

RI;; = ace(B;, Bj) —

C. Recognition Errors D. Surface Categorization

It is also worth investigating the type of recognition esor Inthe next experiment, the robot used its surface-recimgnit
that the robot makes. Fig. 8 shows the confusion matrirodels to learn surface categories. Mt be the resulting
obtained when using the SVM learning algorithm and applyingpbject similarity matrix after performing cross-validati as
all five behaviors on the test surface. The confusion matrdescribed in Section I1V-D. The similarity matrix can be visu
indicates how often a given surface was misclassified as atized in two dimensions by converting it into a distancenwat
other surface (perfect classification would result in a diey and embedding it onto the 2-D plane using the ISOMAP
matrix). In this case, the overall accuracygis0%. The matrix method for non-linear dimensionality reduction [43].
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: - : : : : through the hierarchy are show@ut 1, corresponds to the top-level split
17 : : . . into two categoriesgut 2 is produced by further splitting the two top-level
............... 18 Elj_:[i z 4 el clusters;cut 3 corresponds to the leaf cut of the hierarchy.

the front side of the thinner doormat (i.e., surface 5) asd it
Fig. 9. Two-dimensional embedding of the pair-wise surfdcgiarity matrix ~ Packside (i.e., surface 13) end up in the same cluster. On the
used for surface categorization. The two axes corresponthedfirst two other hand, the front and back sides of the corduroy (i.e.,

dimensions in the lower dimensional embedding computed by tOVIiSP surfaces 7 and 12) end up in two different leaf clusters. tvhic
algorithm, and thus, do not have physical units. Surfacek iggh similarity '
share the same parent cluster.

in W appear close to each other in the graph. The glyph (color aagey
for each surface corresponds to the category of the surfecerding to a
particular cut through the learned surface hierarotyt @ in Fig. 10).

E. Surface-Category Recognition
The robot was also evaluated on how well it can recognize
the correct category of movelsurface (i.e., a surface that was
The 2-D embedding of the similarity matrix is showmot present in the training set). Given a hierarchical siefa
in Fig. 9. The closeness between surfaces in the ISOMARtegorization and a chosen cut through the hierarchy, SVM
embedding corresponds to their similarity W, i.e., surfaces models were trained that could accurately label data from a
with high similarity appear close to each other in the grapfovel surface with the correct surface category. For exampl
Like the confusion matrix (see Fig. 8), the embedding shovgiven the hierarchy shown in Fig. 10 and cut 1, the robot’s
which surfaces are considered to be similar from the point gfsk was to label a novel surface as belonging to either one
view of the robot’s recognition models. of the top two high-level categories. Once the predictiors wa
To construct surface categories, spectral clustering wagade, it was compared with the actual category of the novel
applied on the similarity matri®, as described in Section IV- surface (i.e., the category to which the surface would haenb
D. The resulting hierarchical surface categorization vehin  assigned if the robot had performed all five behaviors tee$im
Fig. 10. Three cuts through the hierarchy are also shewhl, on this surface before estimating the surface categonizpti
which corresponds to the initial top-level spliaut 2, which Category-recognition rates were estimated uséugface-
was produced by further splitting the two top-level cluster pasedcross-validation: At each iteration, data froj| — 1
andcut 3 which corresponds to the leaf cut of the hierarchyurfaces were used for training the model, while data froen th
It is important to note that the robot's experience with teé sremaining one surface was used for testing. The hierarchica
of surfaces was still quite limited, and thus, it is unreiso  categorization itself remained fixed in order to compare the
expect that the learned surface categorization would piyfe predicted surface category to the actual one (i.e., the one
match a categorization provided by a human. shown in Fig. 10). In other words, the elements in the surface
Upon closer examination, however, most leaf clusters in tisémilarity matrix W corresponding to the novel surface were
learned hierarchy tend to consist of highly similar surfaceonly used when evaluating the outputs of the recognition
For example, the first leaf category contains #wft cloth model and not when training it.
and thesoft wool cloth as well as the21st surface in the  The results of this experiment are shown in Fig. 11. Overall,
dataset (scratching in mid air). Both leathers (i.e., su@$a4 the robot was able to recognize the category of a novel seirfac
and 8) are placed in the second cluster, along withbthleetin -~ with accuracy substantially better than chance. Perfooman
board (i.e., surface 6). The third leaf cluster contains surfacegas best with more abstract or high-level surface categorie
that are highly similar to the bare table (i.e., surface Foy. (e.g., cut 1) and worst with the lowest level cut (i.e., the
example, the two papers (i.e., 17 and 18) contained in tHaaf cut). As expected, the accuracy ratesdot 3 are worse
same cluster are so thin that the detected tactile feedlsackhan the surface recognition rates (see Fig. 6), since in the
largely influenced by the table on which they are laid. Botbategory-recognition experiment, the robot is evaluated o



100 the training set) by associating it with the most-similarster

O=m e oo o of surfaces in the learned hierarchy.

90l o---=O" - 1 One of the major findings of this study is that the use of
g P & multiple exploratory behaviors can be crucial for imprayin
§ o a-"" 1 the robot's recognition rate. Performing the same behavior
S . twice also improved the accuracy, but the improvement was
% 70} ’\,:r"‘ : » 1 larger when two different behaviors were used. Given thgdar
.53 n,«"\ potential space of scratching trajectories, a potenti@ilitful
s °f 1 direction for future work may involve automated learning of
8 ()/e/e_e/‘> useful behaviors and exploratory procedures by a robot for
s %or 7O curly the task of characterizing and recognizing surfaces. Such a

o ‘ ‘ ‘  [—®—cus ability is important, especially considering that the opdl set

1 2 3 4 5

of behaviors depends on the surfaces explored by the robot
and, thus, cannot be preprogrammed in advance. In addition
to learning optimal behaviors, it would also be desirable to
implement bi-manual scratching behaviors (e.g., hold gaatb
with one hand and scratch it with the other) in order to scale
up the existing method to a wider variety of household olgject

. Integrating other modalities (e.g., audio, vision, andopi@
novel surfaces, as opposed to familiar ones. Neverthelless, ¢¢ntion) into the framework is also a viable direction foiie

recognition performance for all three cuts improved as moyg, k. Audio, in particular, would allow the robot to perceiv
exploratory behaviors were performed on the test surface. g tace properties by performing exploratory behaviochsas

To summarize, the results from the surface categorizatigipping on the surface and listening for feedback. Some of ou
experiment in Section V-D showed that the robot was able tesearch results already indicate that integrating vémiie
learn surface-recognition models and use them to constriisgédback with proprioception (in the form of joint-torque
a hierarchical surface categorization. The results froms thvalues over the course of the interaction) results in evghéni
section show that the robot was also able to learn SVM modelgrface-recognition rates than the ones obtained wherg usin
that can label a novel surface with its correct surface @ateg either sensory modality alone [42].
Overall, the learned hierarchical clustering of the swegac While the number of surfaces used in this study was
captures some of their physical properties and, geneteltyls larger than those used in previous related work on tactile
to group similar surfaces into the same cluster of the hidar recognition, it still pales in comparison to the hundreds of
different types of surfaces present in our homes and offices.
A hierarchical surface categorization is one possible way t
handle such a large number of entities. In future work, the

This paper presented a method and a representation ffiobot can be evaluated on learning compact surface andtobjec
surface recognition and surface categorization using @ethr hierarchies with emphasis on integration of novel entitigs
axis fingertip accelerometer. The sensor was mounted on ghe learned categorization. Robots that can learn aboge lar
of the fingers of our humanoid robot and was able to captusets of objects and their relationships will undoubtedly be
the vibrations characteristic of a given surface as the trobeetter suited to handle the multiple challenges of human-
scratched it. Our robot was programmed with five differenhhabited environments.
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