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Summary

Motivation
• Buttons are everywhere.
• Robots in human-inhabited environments must

press buttons to be more useful.
• Buttons are designed for humans, not for robots

(some buttons may be too small or too slippery
for robotic fingers made of brushed aluminium).

• Different buttons produce different feedback
when pressed (e.g., click, light up or ring).

• Infants learn from experience obtained through
exploration6.

• Experience that infants obtain while exploring
objects stimulates their interest in these objects7.

• 9 m.o. infants can predict that an interesting
sound will be heard or a bright light will be seen
when an experimenter presses a colored button8.

Related Work
1. Detecting buttons is hard but pressing them is easy.

(Song et al. 1999) (Miura et al. 2005) (Klingbeil et al. 2010)

2. Both pressing and detecting
buttons is hard.

(Nguyen et al. 2009)

3. Button pressing as a
social learning task.

(Thomaz 2006)

Experimental Setup
• 7 buttons.
• 3 different exploration strategies: random,

stimulus-driven, and uncertainty-driven11

(200 trials each)
• 400 evaluation trials.
• 3× 200 + 400 = 1000 trials for each

button.
• Each trial lasted for about 18-20 seconds.
• Exploring one button took about 6 hours.
• Total time was about 7 × 6 = 42 hours.
• 5 pushing behaviors per trial for a total of

35,000 pushing behaviors.
• 3 modalities: video, audio, and proprio-

ception.
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A sample trial performed by the robot. The robot’s field of view is larger
than the images shown here, which were cropped to show only the area

around the button.

Methodology
• Learning from a large-scale dataset with 35000

pushing behaviors11.
• Auditory events were asscociated with the loca-

tion of the color marker on the robotic finger.

The red marker on the robot’s fingertip does not have to overlap with the button to ring it.

• Visual features were used to detect familiar and
novel buttons.
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Illustration for the convolution step. The RGB
image is converted to Y CbCr and the

three channels are convolved with different
convolution masks. The resulting 17 images

are used to compute the features10.

Patches were marked as belonging to the
functional component if the average spatial

density of auditory events exceededµ+ 3σ.

R459 + Class Label → Logistic Regression

Results
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(a) The seven doorbell buttons explored by the robot.
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(b) Auditory events localized in visual space. Each point matches to the location of the robot’s finger when the buzzer went off.
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(c) Densities for the auditory events in visual space shown in (b), estimated using k-NN with k = 5.

(d) “Ground truth” about the visual positions of the functional components extracted by thresholding the densities shown in (c).
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(e) Auditory events localized in visual space. Each point matches to the location of the robot’s finger when the buzzer went off.
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(f) Densities for the auditory events in visual space shown in (e), estimated using k-NN with k = 5.

(g) Functional components for each button learned after 200 trials performed with the uncertainty-driven strategy.
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(h) Two measures of learning progress. The predictions after 200 trials are shown in (g). The “ground truth” is shown in (d).
The kappa statistic(blue line, %) and the normalized smoothed rate of change(red line, %) are shown as functions of the number of trials.

Performance was measured using the Cohen’s kappa
statistic9.
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Results for predicting if a 10 × 10 pixel patch in an image
belongs to the functional component of a familiar button as
a function of the # of trials (average over all 7 buttons).
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gPredictions for the visual locations of functional com-
ponents after different amounts of training using the
uncertainty-driven strategy. For the novel button, predic-
tions are made using the data collected with each of the re-
maining 6 buttons.

After the visual model was trained with all 7 buttons, the
robot was tested with images of the experimental fixture
that it had never seen before.

Conclusions and Future Work
• The learned representations were grounded in

the robot’s experience with the buttons.
• The trained visual model acted like an affor-

dance detector, labeled patches as “pushable”.
• 50-100 trials were sufficient for convergence.

• Future work can add tactile feedback and button
resistance as button properties.

• The exploration strategies need to take into ac-
count the predictions of the visual model.

• The framework can be extended to handle other
small widgets.
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